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1. Introduction

The study of noncommutative geometry is an active topic in both theoretical physics and

mathematics. From the mathematical perspective it is a generalization of classical (commu-

tative) geometry. From the physics perspective it is suggested by the Gedankenexperiment

of localizing events in spacetime with a Planck scale resolution [1]. In this Gedankenex-

periment, a sharp localization induces an uncertainty in the spacetime coordinates, which

can naturally be described by a noncommutative spacetime. Furthermore, noncommuta-

tive geometry and quantum gravity appear to be connected strongly and one can probably

model “low energy” effects of quantum gravity theories using noncommutative geometry.

There have been many attempts to formulate scalar, gauge and gravity theories on

noncommutative spacetime, in particular using the simplest example of a Moyal-Weyl

spacetime having constant noncommutativity between space and time coordinates, see [2, 3]

for reviews. Furthermore, this framework had been applied to phenomenological particle

physics with [4, 5] and without Seiberg-Witten maps (see the review [6] and references

therein), cosmology [7] and black hole physics (see the review [8] and references therein).

Our work is based on the approach outlined in [9 – 11], where a noncommutative gravity

theory based on an arbitrary twist deformation is established. This approach has the

advantages of being formulated using the symmetry principle of deformed diffeomorphisms,
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being coordinate independent and applicable to nontrivial topologies. However, there is

also the disadvantage that it does not match the Seiberg-Witten limit of string theory [12].

Nevertheless, string theory is not the only candidate for a fundamental theory of quantum

gravity. Therefore, the investigation of deformed gravity remains interesting on its own

terms and it could very well emerge from a fundamental theory of quantum gravity different

from string theory.

The outline of this paper is as follows. In section 2 we review the basics of the formalism

of twisted noncommutative differential geometry. For more details and the proofs we refer

to the original paper [10] and the review [11]. We will work with a general twist and do

not restrict ourselves to the Moyal-Weyl deformation.

In section 3 we will study symmetry reduction in theories based on twisted symmetries,

such as the twisted diffeomorphisms in our theory of interest. The reason is that we aim

to investigate which deformations of cosmological and black hole symmetries are possible.

We will derive the conditions that the twist has to satisfy in order to be compatible with

the reduced symmetry. In section 4 we restrict the twists to the class of Reshetikhin-

Jambor-Sykora twists [13, 14], that are twists generated by commuting vector fields and are

convenient for practical applications. Within this restricted class of twists we can classify

more explicitly the possible deformations of Lie algebra symmetries acting on a manifold M.

In section 5 and 6 we apply the formalism to cosmological symmetries as well as

the black hole. We classify the possible Reshetikhin-Jambor-Sykora deformations of these

models and obtain physically interesting ones. In section 7 we conclude and give an outlook

to possible further investigations. In particular possible applications to phenomenological

cosmology and black hole physics will be discussed.

2. Basics of twisted differential geometry and gravity

In order to establish notation, we will give a short summary of the framework of twisted

differential geometry and gravity. More details can be found in [9 – 11].

There is a quite general procedure for constructing noncommutative spaces and their

corresponding symmetries by using a twist. For this we require the following ingredi-

ents [11]:

1. a Lie algebra g

2. an action of the Lie algebra on the space we want to deform

3. a twist element F , constructed from the generators of the Lie algebra g

By a twist element we denote an invertible element of Ug⊗Ug, where Ug is the universal

enveloping algebra of g. F has to fulfill some conditions, which will be specified later.

The basic idea in the following is to combine any bilinear map with the inverse twist and

therefore deform these maps. This leads to a mathematically consistent deformed theory

covariant under the deformed transformations. We will show this now for the deformation

of diffeomorphisms.
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For our purpose we are interested in the Lie algebra of vector fields Ξ on a manifold M.

The transformations induced by Ξ can be seen as infinitesimal diffeomorphisms. A natural

action of these transformations on the algebra of tensor fields T :=
⊕

n,m

⊗n Ω ⊗
⊗m Ξ is

given by the Lie derivative L. Ω denotes the space of one-forms.

In order to deform this Lie algebra, as well as its action on tensor fields and the

tensor fields themselves, we first have to construct the enveloping algebra UΞ. This is the

associative tensor algebra generated by the elements of Ξ and the unit 1, modulo the left

and right ideals generated by the elements [v,w]− vw + wv. This algebra can be seen as a

Hopf algebra by using the following coproduct ∆, antipode S and counit ǫ defined on the

generators u ∈ Ξ and 1 by:

∆(u) = u ⊗ 1 + 1 ⊗ u, ∆(1) = 1 ⊗ 1 ,

ǫ(u) = 0, ǫ(1) = 1 , (2.1)

S(u) = −u, S(1) = 1 .

These definitions can be consistently carried over to the whole enveloping algebra demand-

ing ∆ and ǫ to be algebra homomorphisms and S to be an anti-homomorphism, i.e. for any

two elements η, ξ ∈ UΞ, we require

∆(ηξ) = ∆(η)∆(ξ) , (2.2a)

ǫ(ηξ) = ǫ(η)ǫ(ξ) , (2.2b)

S(ηξ) = S(ξ)S(η) . (2.2c)

The action of the enveloping algebra on the tensor fields can be defined by extending the

Lie derivative

Lηξ(τ) := Lη(Lξ(τ)) , ∀η, ξ ∈ UΞ , τ ∈ T . (2.3)

This action is consistent with the Lie algebra properties, since L[u,v](τ) = Luv(τ)−Lvu(τ)

for all u, v ∈ Ξ by the properties of the Lie derivative.

The extension of the Lie algebra Ξ to the Hopf algebra (UΞ, ·,∆, S, ǫ), where · is the

multiplication in UΞ, can now be used in order to construct deformations of it. For the

deformations we restrict ourselves to twist deformations, which is a wide class of possible

deformations. The reason is that for twist deformations the construction of deformed

differential geometry and gravity can be performed explicitly by only using properties of

the twist, see [10]. Other deformations require further investigations.

In order to perform the deformation we require a twist element F = fα⊗fα ∈ UΞ⊗UΞ

(the sum over α is understood) fulfilling the following conditions

F12(∆ ⊗ id)F = F23(id ⊗ ∆)F , (2.4a)

(ǫ ⊗ id)F = 1 = (id ⊗ ǫ)F , (2.4b)

F = 1 ⊗ 1 + O(λ) , (2.4c)

where F12 := F ⊗ 1, F23 := 1⊗F and λ is the deformation parameter. The first condition

will assure the associativity of the deformed products, the second will assure that deformed
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multiplications with unit elements will be trivial and the third condition assures the exis-

tence of the undeformed classical limit λ → 0. Furthermore, we can assume without loss

of generality that fα (and also fα) are linearly independent for all α, what can be assured

by combining linearly dependent f . Note that F is regarded as formal power series in λ,

such as the deformation itself. Strict (convergent) deformations will not be regarded here.

The simplest example is the twist on R
n given by Fθ := exp

(

− iλ
2 θµν∂µ ⊗ ∂ν

)

with

θµν = const. and antisymmetric, leading to the Moyal-Weyl deformation, but there are

also more complicated ones.

From a twist, one can construct the twisted triangular Hopf algebra

(UΞF , ·,∆F , SF , ǫF ) with R-matrix R := F21F
−1 =: Rα ⊗ Rα, inverse R−1 =:

R̄α ⊗ R̄α = R21 and

∆F (ξ) := F∆(ξ)F−1 , ǫF (ξ) := ǫ(ξ) , SF (ξ) := χS(ξ)χ−1 , (2.5)

where χ := fαS(fα), χ−1 := S(f̄α)f̄α and f̄α ⊗ f̄α := F−1. Furthermore, F21 := fα ⊗ fα

and R21 := Rα ⊗ Rα. Again, we can assume without loss of generality that all summands

of F−1, R and R−1 are linearly independent.

However, as explained in [10], it is simpler to use the triangular ⋆-Hopf algebra H⋆
Ξ =

(UΞ⋆, ⋆,∆⋆, S⋆, ǫ⋆), isomorphic to (UΞF , ·,∆F , SF , ǫF ). The operations in this algebra on

its generators u, v ∈ Ξ (note that this algebra has the same generators as the classical Hopf

algebra) are defined by

u ⋆ v := f̄α(u)f̄α(v) , (2.6a)

∆⋆(u) := u ⊗ 1 + XR̄α ⊗ R̄α(u) , (2.6b)

ǫ⋆(u) := ǫ(u) = 0 , (2.6c)

S−1
⋆ (u) := −R̄α(u) ⋆ XR̄α

, (2.6d)

where for all ξ ∈ UΞ we define Xξ := f̄αξχS−1(f̄α). The action of the twist on the

elements of UΞ is defined by extending the Lie derivative to the adjoint action [10]. Note

that UΞ = UΞ⋆ as vector spaces. The R-matrix is given by R⋆ := XRα ⊗ XRα and is

triangular. The coproduct and antipode (2.6) is defined consistently on UΞ⋆ by using for

all ξ, η ∈ UΞ⋆ the definitions

∆⋆(ξ ⋆ η) := ∆⋆(ξ) ⋆ ∆⋆(η) , S⋆(ξ ⋆ η) := S⋆(η) ⋆ S⋆(ξ) . (2.7)

The next step is to define the ⋆-Lie algebra of deformed infinitesimal diffeomorphisms.

It has been shown [10] that for the twist deformation case the choice (Ξ⋆, [ , ]⋆), where

Ξ⋆ = Ξ as vector spaces and

[u, v]⋆ := [f̄α(u), f̄α(v)] (2.8)

is a natural choice for a ⋆-Lie algebra. It fulfills all conditions which are necessary for a

sensible ⋆-Lie algebra given by

1. Ξ⋆ ⊂ UΞ⋆ is a linear space, which generates UΞ⋆

– 4 –
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2. ∆⋆(Ξ⋆) ⊆ Ξ⋆ ⊗ 1 + UΞ⋆ ⊗ Ξ⋆

3. [Ξ⋆,Ξ⋆]⋆ ⊆ Ξ⋆

The advantage of using the ⋆-Hopf algebra (UΞ⋆, ⋆,∆⋆, S⋆, ǫ⋆) instead of the F-Hopf algebra

(UΞF , ·,∆F , SF , ǫF ) is that the ⋆-Lie algebra of vector fields is isomorphic to Ξ as a vector

space. For the F-Hopf algebra this is not the case and the F-Lie algebra consists in general

of multidifferential operators.

The algebra of tensor fields T is deformed by using the ⋆-tensor product [10]

τ ⊗⋆ τ ′ := f̄α(τ) ⊗ f̄α(τ ′) , (2.9)

where as basic ingredients the deformed algebra of functions A⋆ := (C∞(M), ⋆) as well

as the A⋆-bimodules of vector fields Ξ⋆ and one-forms Ω⋆ enter. We call T⋆ the deformed

algebra of tensor fields. Note that T⋆ = T as vector spaces.

The action of the deformed infinitesimal diffeomorphisms on T⋆ is defined by the ⋆-Lie

derivative

L⋆
u(τ) := Lf̄α(u)(f̄α(τ)) , ∀τ ∈ T⋆ , u ∈ Ξ⋆ , (2.10)

which can be extended to all of UΞ⋆ by L⋆
ξ⋆η(τ) := L⋆

ξ(L
⋆
η(τ)).

Furthermore, we define the ⋆-pairing 〈·, ·〉⋆ : Ξ⋆ ⊗C Ω⋆ → A⋆ between vector fields and

one-forms as

〈v, ω〉⋆ := 〈f̄α(v), f̄α(ω)〉 , ∀v ∈ Ξ⋆, ω ∈ Ω⋆ , (2.11)

where 〈·, ·〉 is the undeformed pairing.

Based on the deformed symmetry principle one can define covariant derivatives, torsion

and curvature. This leads to deformed Einstein equations, see [10], which we do not have

to review here, since we do not use them in the following.

3. Symmetry reduction in twisted differential geometry

Assume that we have constructed a deformed gravity theory based on a twist F ∈ UΞ⊗UΞ.

Like in Einstein gravity, the physical applications of this theory is strongly dependent on

symmetry reduction. In this section we first define what we mean by symmetry reduction

of a theory covariant under a Lie algebraic symmetry (e.g. infinitesimal diffeomorphisms)

and then extend the principles to deformed symmetries and ⋆-Lie algebras.

In undeformed general relativity we often face the fact that the systems we want to

describe have certain (approximate) symmetries. Here we restrict ourselves to Lie group

symmetries. For example in cosmology one usually constrains oneself to fields invariant

under certain symmetry groups G, like e.g. the euclidian group E3 for flat universes or

the SO(4) group for universes with topology R × S3, where the spatial hypersurfaces are

3-spheres. For a non rotating black hole one usually demands the metric to be stationary

and spherically symmetric. Practically, one uses the corresponding Lie algebra g of the

symmetry group G, represents it faithfully on the Lie algebra of vector fields Ξ on the
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manifold M and demands the fields τ ∈ T , which occur in the theory, to be invariant

under these transformations, i.e. we demand

Lv(τ) = 0 , ∀v ∈ g . (3.1)

Since the Lie algebra g is a linear space we can choose a basis {ti : i = 1, . . . ,dim(g)} and

can equivalently demand

Lti(τ) = 0 , ∀i = 1, 2, . . . ,dim(g) . (3.2)

The Lie bracket of the generators has to fulfill

[ti, tj] = f k
ij tk , (3.3)

where f k
ij are the structure constants.

One can easily show that if we combine two invariant tensors with the tensor product,

the resulting tensor is invariant too because of the trivial coproduct

Lti(τ ⊗ τ ′) = Lti(τ) ⊗ τ ′ + τ ⊗ Lti(τ
′) . (3.4)

The same holds true for pairings 〈v, ω〉 of invariant objects v ∈ Ξ and ω ∈ Ω.

Furthermore, if a tensor is invariant under infinitesimal transformations, it is also

invariant under (at least small) finite transformations, since they are given by exponen-

tiating the generators. The exponentiated generators are part of the enveloping algebra,

i.e. exp(αiti) ∈ Ug, where αi are parameters. For large finite transformations the topol-

ogy of the Lie group can play a role, such that the group elements may not simply be

given by exponentiating the generators. In the following we will focus only on small finite

transformations in order to avoid topological effects.

We now generalize this to the case of ⋆-Hopf algebras and their corresponding ⋆-Lie

algebras. Our plan is as follows: we start with a suitable definition of a ⋆-Lie subal-

gebra constructed from the Lie algebra (g, [ , ]). This definition is guided by conditions,

which allow for deformed symmetry reduction using infinitesimal transformations. Then we

complete this ⋆-Lie subalgebra in several steps to a ⋆-enveloping subalgebra, a ⋆-Hopf sub-

algebra and a triangular ⋆-Hopf subalgebra. We will always be careful that the dimension

of the ⋆-Lie subalgebra remains the same as the dimension of the corresponding classical

Lie algebra. At each step we obtain several restrictions between the twist and (g, [ , ]).

We start by taking the generators {ti} of g ⊆ Ξ and representing their deformations

in the ⋆-Lie algebra (Ξ⋆, [ , ]⋆) as

t⋆i = ti +
∞

∑

n=1

λnt
(n)
i , (3.5)

where λ is the deformation parameter and t
(n)
i ∈ Ξ⋆.

The span of these deformed generators, together with the ⋆-Lie bracket, should form

a ⋆-Lie subalgebra (g⋆, [ , ]⋆) := (span(t⋆i ), [ , ]⋆). Therefore (g⋆, [ , ]⋆) has to obey certain

– 6 –
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conditions. Natural conditions are

[g⋆, g⋆]⋆ ⊆ g⋆, i.e. [t⋆i , t
⋆
j ]⋆ = f⋆ k

ij t⋆k with f⋆ k
ij = f k

ij + O(λ) (3.6a)

∆⋆(g⋆) ⊆ g⋆ ⊗ 1 + UΞ⋆ ⊗ g⋆, which is equivalent to R̄α(g⋆) ⊆ g⋆ ∀α (3.6b)

The first condition is a basic feature of a ⋆-Lie algebra. The second condition implies that if

we have two g⋆ invariant tensors τ, τ ′ ∈ T⋆, the ⋆-tensor product of them is invariant as well

L⋆
t⋆
i
(τ ⊗⋆ τ ′) = L⋆

t⋆
i
(τ) ⊗⋆ τ ′ + R̄α(τ) ⊗⋆ L

⋆
R̄α(t⋆i )(τ

′) = 0 , (3.7)

since R̄α(t⋆i ) ∈ g⋆. The ⋆-pairings 〈v, ω〉⋆ of two invariant objects v ∈ Ξ⋆ and ω ∈ Ω⋆ are also

invariant under the ⋆-action of g⋆. These are important features if one wants to combine

invariant objects to e.g. an invariant action. Furthermore, the conditions are sufficient such

that the following consistency relation is fulfilled for any invariant tensor τ ∈ T⋆

0 = f⋆ k
ij L⋆

t⋆
k
(τ) = L⋆

[t⋆i ,t⋆j ](τ) = L⋆
t⋆i

(L⋆
t⋆j

(τ)) − L⋆
R̄α(t⋆j )(L

⋆
R̄α(t⋆i )(τ)) , (3.8)

since R̄α(t⋆i ) ∈ g⋆.

Hence by demanding the two conditions (3.6) for the ⋆-Lie subalgebra (span(t⋆i ), [ , ]⋆)

we can consistently perform symmetry reduction by using deformed infinitesimal

transformations. In the classical limit λ → 0 we obtain the classical Lie algebra

(g⋆, [ , ]⋆)
λ→0
−→ (g, [ , ]).

Next, we consider the extension of the ⋆-Lie subalgebra (g⋆, [ , ]⋆) ⊆ (Ξ⋆, [ , ]⋆) to the

triangular ⋆-Hopf subalgebra H⋆
g = (Ug⋆, ⋆,∆⋆, S⋆, ǫ⋆) ⊆ H⋆

Ξ. This can be seen as extending

the infinitesimal transformations to a quantum group. We will divide this path into several

steps, where in every step we have to demand additional restrictions on the twist.

Firstly, we construct the ⋆-tensor algebra generated by the elements of g⋆ and 1. We

take this tensor algebra modulo the left and right ideals generated by the elements [u, v]⋆−

u ⋆ v + R̄α(v) ⋆ R̄α(u). It is necessary that these elements are part of Ug⋆, i.e. we require

R̄α(g⋆) ⋆ R̄α(g⋆) ⊆ Ug⋆ . (3.9)

This leads to the algebra (Ug⋆, ⋆), which is a subalgebra of (UΞ⋆, ⋆).

Secondly, we extend this subalgebra to a ⋆-Hopf subalgebra. Therefore we additionally

have to require that

∆⋆(Ug⋆) ⊆ Ug⋆ ⊗ Ug⋆ , (3.10a)

S⋆(Ug⋆) ⊆ Ug⋆ . (3.10b)

Note that we do not demand that S−1
⋆ (defined on UΞ⋆) closes in Ug⋆, since this is in

general not the case for a nonquasitriangular Hopf algebra and we do not want to demand

quasitriangularity at this stage. Then the ⋆-Hopf algebra H⋆
g is a Hopf subalgebra of H⋆

Ξ.

Thirdly, we additionally demand that there exists an R-matrix R⋆ ∈ Ug⋆ ⊗ Ug⋆. It

is natural to take the R-matrix of the triangular ⋆-Hopf algebra H⋆
Ξ defined by R⋆ :=

XRα ⊗ XRα . This leads to the restrictions

XRα ,XRα ∈ Ug⋆ , ∀α. (3.11)

– 7 –
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Since R⋆ is triangular, i.e. R−1
⋆ = R̄α

⋆ ⊗ R̄⋆α = R⋆21 = R⋆α ⊗Rα
⋆ , we also have XR̄α ,XR̄α

∈

Ug⋆ , ∀α. If these conditions are fulfilled, H⋆
g is a triangular ⋆-Hopf subalgebra of H⋆

Ξ with

the same R-matrix.

As we have seen, extending the ⋆-Lie subalgebra to a (triangular) ⋆-Hopf subalge-

bra gives severe restrictions on the possible deformations, more than just working with the

deformed infinitesimal transformations given by a ⋆-Lie subalgebra or the finite transforma-

tions given by the ⋆-enveloping subalgebra (Ug⋆, ⋆). Now the question arises if we actually

require the deformed finite transformations to form a (triangular) ⋆-Hopf algebra in order

to use them for a sensible symmetry reduction. Because (Ug⋆, ⋆) describes deformed finite

transformations and we have the relation

L⋆
Ug⋆\{1}

(τ) = {0} ⇔ L⋆
g⋆

(τ) = {0} , (3.12)

we can consistently demand tensors to be invariant under (Ug⋆, ⋆), since we require tensors

to be invariant under (g⋆, [ , ]⋆). Therefore, a well defined (Ug⋆, ⋆) leads to a structure

sufficient for symmetry reduction. The equivalence (3.12) can be shown by using linearity

of the ⋆-Lie derivative and the property L⋆
ξ⋆η(τ) = L⋆

ξ(L
⋆
η(τ)).

In order to better understand the different restrictions necessary for constructing the

⋆-Lie subalgebra (g⋆, [ , ]⋆), the ⋆-enveloping subalgebra and the (triangular) ⋆-Hopf sub-

algebra (Ug⋆, ⋆,∆⋆, S⋆, ǫ⋆), we restrict ourselves in the following sections to the class of

Reshetikhin-Jambor-Sykora twists [13, 14]. This is a suitable nontrivial generalization

of the Moyal-Weyl product, also containing e.g. κ and q deformations when applied to

Poincaré symmetry.

4. The case of Reshetikhin-Jambor-Sykora twists

Let {Va ∈ Ξ} be an arbitrary set of mutually commuting vector fields, i.e. [Va, Vb] = 0 , ∀a,b,

on an n dimensional manifold M. Then the object

FV := exp

(

−
iλ

2
θabVa ⊗ Vb

)

∈ UΞ ⊗ UΞ (4.1)

is a twist element, if θ is constant and antisymmetric [10, 13, 14]. We call (4.1) a

Reshetikhin-Jambor-Sykora twist. Note that this twist is not restricted to the topology R
n

for the manifold M.

Furthermore, we can restrict ourselves to θ with maximal rank and an even number of

vector fields Va, since we can lower the rank of the Poisson structure afterwards by choosing

some of the Va to be zero. We can therefore without loss of generality use the standard form

θ =

















0 1 0 0 · · ·

−1 0 0 0 · · ·

0 0 0 1 · · ·

0 0 −1 0 · · ·
...

...
...

...
. . .

















(4.2)
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by applying a suitable GL(n) transformation on the Va.

This twist element is easy to apply and in particular we have for the inverse and the

R-matrix

F−1
V = exp

(

iλ

2
θabVa ⊗ Vb

)

, R = FV,21F
−1
V = F−2

V = exp
(

iλθabVa ⊗ Vb

)

. (4.3)

Now let (g, [ , ]) ⊆ (Ξ, [ , ]) be the Lie algebra of the symmetry we want to deform.

We choose a basis of this Lie algebra {ti : i = 1, . . . ,dim(g)} with [ti, tj ] = f k
ij tk.

Next, we discuss the symmetry reduction based on the ⋆-Lie subalgebra, as explained

in section 3. Therefore we make the ansatz (3.5) for the generators t⋆i . Furthermore,

we evaluate the two conditions (3.6) the t⋆i have to satisfy. We start with the coproduct

condition (3.6b), which is equivalent to R̄α(t⋆i ) ∈ span(t⋆i ), ∀α, where α is a multi index.

Using the explicit form of the inverse R-matrix (4.3) we arrive at the conditions

[Va1 , · · · [Van , t⋆i ] · · · ] = N ⋆j
a1···anit

⋆
j , (4.4)

where N ⋆j
a1···ani := N j

a1···ani +
∞
∑

k=1

λkN
(k) j
a1···ani are constants.

The only independent condition in (4.4) is given by

[Va, t
⋆
i ] = N ⋆j

ai t⋆j , (4.5)

since it implies all the other ones by linearity. In particular, the zeroth order in λ

of (4.5) yields

[Va, ti] = N j
aitj . (4.6)

This leads to the following

Proposition 1. Let (g, [ , ]) ⊆ (Ξ, [ , ]) be a classical Lie algebra and (Ξ⋆, [ , ]⋆) the ⋆-Lie

algebra of vector fields deformed by a Reshetikhin-Jambor-Sykora twist, constructed with

vector fields Va. Then for a symmetry reduction respecting the minimal axioms (3.6), it is

necessary that the following Lie bracket relations hold true

[Va, g] ⊆ g ,∀a . (4.7)

In other words, (span(ti, Va), [ , ]) ⊆ (Ξ, [ , ]) forms a Lie algebra with ideal g. Here ti are

the generators of g.

Note that this gives conditions relating the classical Lie algebra (g, [ , ]) with the twist.

Next, we evaluate the ⋆-Lie bracket condition (3.6a). Using the explicit form of the

inverse twist (4.3) and (4.5) we obtain

f̄α(n)
(t⋆i ) = [Va1 , · · · [Van , t⋆i ] · · · ] =

(

N ⋆
an

· · · N ⋆
a1

)j

i
t⋆j =: N ⋆j

α(n)i
t⋆j , (4.8a)

f̄α(n)(t⋆i ) = Θβ(n)α(n) f̄β(n)
(t⋆i ) , (4.8b)

Θβ(n)α(n) :=
1

n!

(

iλ

2

)n

θb1a1 · · · θbnan , (4.8c)
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where α(n), β(n) are multi indices. This leads to

[t⋆i , t
⋆
j ]⋆ = Θβ(n)α(n)N ⋆k

β(n)i
N ⋆l

α(n)j
[t⋆k, t

⋆
l ] . (4.9)

Note that in particular for the choice t⋆i = ti, ∀i, the ⋆-Lie subalgebra closes with structure

constants

[ti, tj ]⋆ = Θβ(n)α(n)N k
β(n)i

N l
α(n)j

[tk, tl] = Θβ(n)α(n)N k
β(n)i

N l
α(n)j

f m
kl tm =: f⋆ m

ij tm , (4.10)

where we have used the N defined in (4.6). This leads to the following

Proposition 2. Let [Va, g⋆] ⊆ g⋆ ,∀a. Then we can always construct a ⋆-Lie subalgebra

(g⋆, [ , ]⋆) ⊆ (Ξ⋆, [ , ]⋆) by choosing the generators as t⋆i = ti for all i. With this we have

g⋆ = g as vector spaces and the structure constants are deformed as

f⋆ m
ij = Θβ(n)α(n)N k

β(n)i
N l

α(n)j
f m

kl . (4.11)

Since the condition (3.6b) together with the requirement t⋆i = ti, for all i, automatically

fulfills (3.6a), we choose t⋆i = ti, for all i, as a canonical embedding. In general, other possi-

ble embeddings require further constructions to fulfill condition (3.6a) and are therefore less

natural. We will discuss possible differences between this and other embeddings later on,

when we construct the ⋆-Hopf subalgebra and the ⋆-Lie derivative action on ⋆-tensor fields.

In addition, we obtain that the necessary condition (3.9) for extending g⋆ to the

⋆-enveloping subalgebra (Ug⋆, ⋆) ⊆ (UΞ⋆, ⋆) is automatically fulfilled, since we have

R̄α(n)
(g⋆) ⊆ g⋆ for all α(n) and additionally

R̄α(n)(g⋆) = (−2)nΘβ(n)α(n)R̄β(n)
(g⋆) ⊆ g⋆ , ∀α(n). (4.12)

Next, we evaluate the conditions (3.10), which have to be fulfilled in order to construct

the ⋆-Hopf subalgebra H⋆
g ⊆ H⋆

Ξ. For the particular choice of the twist (4.1) we obtain

the following

Proposition 3. Let (Ug⋆, ⋆) ⊆ (UΞ⋆, ⋆) be a ⋆-enveloping subalgebra and let the de-

formation parameter λ 6= 0. Then in order to extend (Ug⋆, ⋆) to the ⋆-Hopf subalgebra

H⋆
g = (Ug⋆, ⋆,∆⋆, S⋆, ǫ⋆) ⊆ H⋆

Ξ the condition

Va1 ∈ g⋆ , if [Va2 , g⋆] 6= {0} (4.13)

has to hold true for all pairs of indices (a1, a2) connected by the antisymmetric matrix

θ (4.2), i.e. (a1, a2) ∈
{

(1, 2), (2, 1), (3, 4), (4, 3), . . .
}

.

Note that these conditions depend on the embedding t⋆i = t⋆i (tj). The proof of this

proposition is shown in the appendix A.

Finally, if we demand H⋆
g to be a triangular ⋆-Hopf algebra (3.11) we obtain the

stringent condition

Va ∈ g⋆ , ∀a . (4.14)
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This can be shown by using XRα = Rα and Va ⋆ Vb = VaVb, which holds true for the class

of Reshetikhin-Jambor-Sykora twists.

As we have seen above, there are much stronger restrictions on the Lie algebra (g, [ , ])

and the twist, if we want to extend the deformed infinitesimal transformations (g⋆, [ , ]⋆)

to the (triangular) ⋆-Hopf subalgebra H⋆
g. In particular this extension restricts the Va

themselves, while for infinitesimal transformations and the finite transformations (Ug⋆, ⋆)

only the images of Va acting on g⋆ are important.

Next, we study the ⋆-action of the ⋆-Lie and Hopf algebra on the deformed tensor

fields. The ⋆-action of the generators t⋆i on τ ∈ T⋆ is defined by (2.10) and simplifies to

L⋆
t⋆i

(τ) = Θα(n)β(n)N ⋆j
α(n)i

Lt⋆j

(

f̄β(n)
(τ)

)

. (4.15)

For invariant tensors, the ⋆-Lie derivative has to vanish to all orders in λ, since we work

with formal power series. If we now for explicitness take the natural choice t⋆i = ti we

obtain the following

Proposition 4. Let [Va, g⋆] ⊆ g⋆ ,∀a and t⋆i = ti, ∀i. Then a tensor τ ∈ T⋆ is ⋆-invariant

under (g⋆, [ , ]⋆), if and only if it is invariant under the undeformed action of (g, [ , ]), i.e.

L⋆
g⋆

(τ) = {0} ⇔ Lg(τ) = {0} . (4.16)

Proof. For the proof we make the ansatz τ =
∞
∑

n=0
λnτn and investigate L⋆

ti
(τ) order by order

in λ, since we work with formal power series. By using (4.6) to reorder the Lie derivatives

such that ti is moved to the right, it can be shown recursively in powers of λ that the

proposition holds true.

Note that for t⋆i 6= ti this does not necessarily hold true. We can not make statements for

this case, since we would require a general solution of (4.9), which we do not have yet. But

we mention again that we consider choosing t⋆i different from ti quite unnatural.

This proposition translates to the case of finite symmetry transformations with t⋆i = ti

because of the properties of the ⋆-Lie derivative.

The framework developed in this section will now be applied to cosmology and black

holes in order to give some specific examples and discuss possible physical implications.

5. Application to cosmology

In this section we will investigate models with symmetry group E3 in four spacetime di-

mensions with topology R
4. These are flat Friedmann-Robertson-Walker (FRW) universes.

The undeformed Lie algebra of this group is generated by the “momenta” pi and “angular

momenta” Li, i ∈ {1, 2, 3}, which we can represent in the Lie algebra of vector fields as

pi = ∂i , Li = ǫijkx
j∂k , (5.1)

where ǫijk is the Levi-Civita symbol.
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The undeformed Lie bracket relations are

[pi, pj] = 0 , [pi, Lj ] = −ǫijkpk , [Li, Lj ] = −ǫijkLk . (5.2)

We will work with the natural embedding t⋆i = ti, and therefore the ⋆-Lie subalgebra

is given by g⋆ = e3⋆ = e3 = span(pi, Li).

We can now explicitly evaluate the condition each twist vector field Va has to satisfy

given by [Va, e3] ⊆ e3 (cf. proposition 1). Since the generators are at most linear in the

spatial coordinates, Va can be at most quadratic in order to fulfill this condition. If we

make a quadratic ansatz with time dependent coefficients we obtain that each Va has to

be of the form

Va = V 0
a (t)∂t + ci

a∂i + di
aLi + fax

i∂i , (5.3)

where ci
a, di

a, fa ∈ R and V 0
a (t) ∈ C∞(R) in order to obtain hermitian deformations. If all

Va have the form (5.3), the ⋆-Lie algebra closes (cf. proposition 2).

Next, we have to find conditions such that the Va are mutually commuting. A brief

calculation shows that the following conditions have to be fulfilled:

di
ad

j
bǫijk = 0 ,∀k , (5.4a)

ci
ad

j
bǫijk − ci

bd
j
aǫijk + fac

k
b − fbc

k
a = 0 ,∀k , (5.4b)

[V 0
a (t)∂t, V

0
b (t)∂t] = 0 . (5.4c)

As a first step, we will now work out all possible deformations of e3 when twisted with

two commuting vector fields. We will classify the possible solutions. Therefore we divide

the solutions into classes depending on the value of di
a and fa. We use as notation for our

cosmologies CAB , where A ∈ {1, 2, 3} and B ∈ {1, 2}, which will become clear later on,

when we sum up the results in table 1.

Type C11 is defined to be vector fields with di
1 = di

2 = 0 and f1 = f2 = 0, i.e.

V1(C11) = V 0
1 (t)∂t + ci

1∂i , V2(C11) = V 0
2 (t)∂t + ci

2∂i . (5.5)

These vector fields fulfill the first two conditions (5.4a) and (5.4b). The solutions of the

third condition (5.4c) will be discussed later, since this classification we perform now does

not depend on it.

Type C21 is defined to be vector fields with di
1 = di

2 = 0, f1 6= 0 and f2 = 0. The

first condition (5.4a) is trivially fulfilled and the second (5.4b) is fulfilled, if and only if

ci
2 = 0, ∀i, i.e. type C21 is given by the vector fields

Ṽ1(C21) = V 0
1 (t)∂t + ci

1∂i + f1x
i∂i , Ṽ2(C21) = V 0

2 (t)∂t . (5.6)

These vector fields can be simplified to

V1(C21) = ci
1∂i + f1x

i∂i , V2(C21) = V 0
2 (t)∂t , (5.7)

since both lead to the same twist (4.1).
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CAB d1 = d2 = 0 d1 6= 0 , d2 = 0

f1 = 0, V1 = V 0
1 (t)∂t + ci

1∂i V1 = V 0
1 (t)∂t + ci

1∂i + di
1Li

f2 = 0 V2 = V 0
2 (t)∂t + ci

2∂i V2 = V 0
2 (t)∂t + κ di

1∂i

f1 6= 0, V1 = ci
1∂i + f1x

i∂i V1 = ci
1∂i + di

1Li + f1x
i∂i

f2 = 0 V2 = V 0
2 (t)∂t V2 = V 0

2 (t)∂t

f1 = 0, V1 = V 0
1 (t)∂t V1 = V 0

1 (t)∂t + 1
f2

d
j
1c

k
2ǫjki∂i + di

1Li

f2 6= 0 V2 = ci
2∂i + f2x

i∂i V2 = V 0
2 (t)∂t + ci

2∂i + f2x
i∂i

Table 1: Two vector field deformations of the cosmological symmetry group E3.

Solutions with di
1 = di

2 = 0, f1 6= 0 and f2 6= 0 lie in type C21, since we can perform

the twist conserving map V2 → V2 −
f2

f1
V1, which transforms f2 to zero. Furthermore C31

is defined by di
1 = di

2 = 0, f1 = 0 and f2 6= 0 and is equivalent to C21 by interchanging the

labels of the vector fields.

Next, we go on to solutions with without loss of generality d1 6= 0 and d2 = 0 (d denotes

the vector). Note that this class contains also the class with d1 6= 0 and d2 6= 0. To see this,

we use the first condition (5.4a) and obtain that d1 and d2 have to be parallel, i.e. di
2 = κdi

1.

Then we can transform d2 to zero by using the twist conserving map V2 → V2 − κV1.

Type C12 is defined to be vector fields with d1 6= 0, d2 = 0 and f1 = f2 = 0. The first

condition (5.4a) is trivially fulfilled, while the second condition (5.4b) requires that c2 is

parallel to d1, i.e. we obtain

V1(C12) = V 0
1 (t)∂t + ci

1∂i + di
1Li , V2(C12) = V 0

2 (t)∂t + κ di
1∂i , (5.8)

where κ ∈ R is a constant.

Type C22 is defined to be vector fields with d1 6= 0, d2 = 0, f1 6= 0 and f2 = 0. Solving

the second condition (5.4b) (therefore we have to use that the vectors are real!) we obtain

V1(C22) = ci
1∂i + di

1Li + f1x
i∂i , V2(C22) = V 0

2 (t)∂t , (5.9)

where we could set without loss of generality V 0
1 (t) to zero, as in type C21. Note that C21

is contained in C22 by violating the condition d1 6= 0.

Finally, we come to the last class, type C32, defined by d1 6= 0, d2 = 0, f1 = 0 and

f2 6= 0. This class contains also the case d1 6= 0, d2 = 0, f1 6= 0 and f2 6= 0 by using the

twist conserving map V1 → V1 −
f1

f2
V2. The vector fields are given by

V1(C32) = V 0
1 (t)∂t +

d
j
1c

k
2ǫjki

f2
∂i + di

1Li , V2(C32) = V 0
2 (t)∂t + ci

2∂i + f2x
i∂i . (5.10)

Note that type C11 and C12 can be extended to a triangular ⋆-Hopf subalgebra by

choosing V 0
1 (t) = V 0

2 (t) = 0 in each case.

For a better overview we additionally present the the results in table 1, containing all

possible two vector field deformations CAB of the Lie algebra of the euclidian group. From

this table the notation CAB becomes clear.
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Next, we discuss solutions to the third condition (5.4c) [V 0
1 (t)∂t, V

0
2 (t)∂t] = 0. It

is obvious that choosing either V 0
1 (t) = 0 or V 0

2 (t) = 0 and the other one arbitrary is

a solution. Additionally, we consider solutions with V 0
1 (t) 6= 0 and V 0

2 (t) 6= 0. Therefore

there has to be some point t0 ∈ R, such that without loss of generality V 0
1 (t) is unequal zero

in some open region U ⊆ R around t0. In this region we can perform the diffeomorphism

t → t̃(t) :=
t
∫

t0

dt′ 1
V 0
1 (t′)

leading to Ṽ 0
1 (t̃) = 1. With this the third condition (5.4c) becomes

0 = [V 0
1 (t)∂t, V

0
2 (t)∂t] = [Ṽ 0

1 (t̃)∂t̃, Ṽ
0
2 (t̃)∂t̃] =

(

∂t̃Ṽ
0
2 (t̃)

)

∂t̃ . (5.11)

This condition is solved if and only if Ṽ 0
2 (t̃) = const. for t ∈ U ⊆ R. For the subset of

analytical functions Cω(R) ⊂ C∞(R) we can continue this condition to all R and obtain the

global relation V 0
2 (t) = κV 0

1 (t), with some constant κ ∈ R. For non analytic, but smooth

functions, we can not continue these relations to all R and therefore only obtain local condi-

tions restricting the functions in the overlap of their supports to be linearly dependent. In

particular non analytic functions with disjoint supports fulfill the condition (5.4c) trivially.

After characterizing the possible two vector field deformations of e3 we briefly give a

method how to obtain twists generated by a larger number of vector fields. For this purpose

we use the canonical form of θ (4.2).

Assume that we want to obtain deformations with e.g. four vector fields. Then of course

all vector fields have to be of the form (5.3). According to the form of θ we have two blocks

of vector fields (a, b) = (1, 2) and (a, b) = (3, 4), in which the classification described above

for two vector fields can be performed. This means that all four vector field twists can be

obtained by using two types of two vector field twists. We label the twist by using a tuple

of types, e.g. (C11,C22) means that V1, V2 are of type C11 and V3, V4 of type C22. But this

does only assure that [Va, Vb] = 0 for (a, b) ∈ {(1, 2), (3, 4)} and we have to demand further

restrictions in order to fulfill [Va, Vb] = 0 for all (a, b) and that all vector fields give indepen-

dent contributions to the twist. In particular twists constructed with linearly dependent

vector fields can be reduced to a twist constructed by a lower number of vector fields.

This method naturally extends to a larger number of vector fields, until we cannot

find anymore independent and mutually commuting vector fields. We will now give two

examples for the e3 case in order to clarify the construction.

As a first example we construct the four vector field twist (C11,C11). In this case all

four vector fields commute without imprinting further restrictions. We assume that three

of the four vectors ca are linearly independent, such that the fourth one, say c4, can be

decomposed into the other ones. If we now choose four linearly independent functions

V 0
a (t) (this means that they are non analytic) leads to a proper four vector field twist.

As a second simple example we construct the four vector field twist (C21,C21). In

order to have commuting vector fields we obtain the condition ci
3 = f3

f1
ci
1. We therefore

have V3 = f3

f1
V1 and the four vector field twist can be reduced to the two vector field twist

of type C21 with Ṽ1 = V1 and Ṽ2 = V2 + f3

f1
V4. This is an example of an improper four

vector field twist.
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This method can be applied in order to investigate general combinations of two vector

field twists, if one requires them. Because this construction is straightforward and we do

not require these twists for our discussions, we do not present them here.

At the end we calculate the ⋆-commutator of the linear coordinate functions xµ ∈ A⋆

for the various types of models in first order in the deformation parameter λ. It is given by

cµν := [xµ ⋆, xν ] := xµ ⋆ xν − xν ⋆ xµ = iλθabVa(x
µ)Vb(x

ν) + O(λ2) . (5.12)

The results are given in appendix B and show that these commutators can be at most

quadratic in the spatial coordinates xi. Possible applications of these models will be

discussed in the outlook, see section 7.

6. Application to black holes

In this section we investigate possible deformations of non rotating black holes. We will

do this in analogy to the cosmological models and therefore do not have to explain every

single step.

The undeformed Lie algebra of the symmetry group R×SO(3) of a non rotating black

hole is generated by the vector fields

p0 = ∂t , Li = ǫijkx
j∂k , (6.1)

given in cartesian coordinates. We choose t⋆i = ti for all i and define g⋆ = g = span(p0, Li).

It can be shown that each twist vector field Va has to be of the form

Va = (c0
a(r) + N0

a t)∂t + di
aLi + fa(r)x

i∂i (6.2)

in order to fulfill [Va, g] ⊆ g. Here r = ‖x‖ is the euclidian norm of the spatial

position vector.

The next task is to construct the two vector field deformations. Therefore we addi-

tionally have to demand [Va, Vb] = 0, ∀a,b, leading to the conditions

di
ad

j
bǫijk = 0 , ∀k , (6.3a)

(fa(r)x
j∂j − N0

a )c0
b(r) − (fb(r)x

j∂j − N0
b )c0

a(r) = 0 , (6.3b)

fa(r)f
′
b(r) − f ′

a(r)fb(r) = 0 , (6.3c)

where f ′
a(r) means the derivative of fa(r). Note that (6.3c) is a condition similar to (5.4c),

and therefore has the same type of solutions. Because of this, the functions f1(r) and f2(r)

have to be parallel in the overlap of their supports. From this we can always eliminate

locally one fa(r) by a twist conserving map and simplify the investigation of the condi-

tion (6.3b). At the end, the local solutions have to be glued together. We choose without

loss of generality f1(r) = 0 for our classification of local solutions.

The solution to (6.3a) is that the da have to be parallel. We use

da = κad (6.4)
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BAB f2(r) = 0 f2(r) 6= 0

N0
1 = 0, V1 = c0

1(r)∂t + κ1d
iLi V1 = c0

1∂t + κ1d
iLi

N0
2 = 0 V2 = c0

2(r)∂t + κ2d
iLi V2 = c0

2(r)∂t + κ2d
iLi + f2(r)x

i∂i

N0
1 6= 0, V1 = (c0

1(r) + N0
1 t)∂t V1 = (c0

1(r) + N0
1 t)∂t + κ1d

iLi

N0
2 = 0 V2 = κ2d

iLi V2 = − 1
N0

1
f2(r)rc

0′
1 (r)∂t + κ2d

iLi + f2(r)x
i∂i

N0
1 = 0, V1 = κ1d

iLi V1 = c0
1(r)∂t + κ1d

iLi, with (6.5)

N0
2 6= 0 V2 = (c0

2(r) + N0
2 t)∂t V2 = (c0

2(r) + N0
2 t)∂t + κ2d

iLi + f2(r)x
i∂i

Table 2: Two vector field deformations of the black hole symmetry group R × SO(3). Note that

c0

1
(r) = c0

1
has to be constant in type B12.

with constants κa ∈ R and some arbitrary vector d 6= 0.

We now classify the solutions to (6.3b) according to N0
a and f2(r) and label them by

BAB . We distinguish between f2(r) being the zero function or not. The result is shown in

table 2. Other choices of parameters can be mapped by a twist conserving map into these

classes. Note that in particular for analytical functions fa(r) the twist conserving map

transforming f1(r) to zero can be performed globally, and with this also the classification

of twists given in table 2.

In type B32 we still have to solve a differential equation for c0
1(r) given by

c0
1(r) =

f2(r)

N0
2

rc0′
1 (r) , (6.5)

for an arbitrary given f2(r). We will not work out the solutions to this differential equation,

since type B32 is a quite unphysical model, in which the noncommutativity is increasing

linear in time due to N0
2 6= 0.

Note that B11 can be extended to a triangular ⋆-Hopf algebra by choosing c0
a(r) = c0

a,

for a ∈ {1, 2}. In addition, B12 is a ⋆-Hopf algebra for κ1 = κ2 = 0.

The ⋆-commutators cµν = [xµ ⋆, xν ] of the coordinate functions xµ ∈ A⋆ in order λ1 for

these models are given in the appendix B. They can be used in order to construct sensible

physical models of a noncommutative black hole.

By using the method explained in the previous section, the two vector field twists can

be extended to multiple vector field twists. Since we do not require these twists in our

work and their construction is straightforward, we do not present them here.

7. Conclusion and outlook

We have discussed symmetry reduction in noncommutative gravity using the formalism

of twisted noncommutative differential geometry. Our motivation for these investigations

derives from the fact that, for most physical applications of gravity theories, including

cosmology, symmetry reduction is required due to the complexity of such models, already

in the undeformed case.

In section 3 we have presented a general method for symmetry reduction in twisted

gravity theories. As a result we have obtained restrictions on the twist, depending on
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the structure of the twisted symmetry group. In particular, we find that deforming the

infinitesimal symmetry transformations results in weaker restrictions than deforming the

finite transformations and demanding a quantum group structure. In section 4 we have

applied this general method to gravity theories twisted by Reshetikhin-Jambor-Sykora

twists. These are twists constructed from commuting vector fields. In this case we could

give explicit conditions, which have to be fulfilled in order to allow symmetry reduction of

a given Lie group.

In sections 5 and 6 we have investigated admissible deformations of FRW and black

hole symmetries by a Reshetikhin-Jambor-Sykora twist. In this class we have classified all

possible deformations. This lays the foundation for phenomenological studies of noncom-

mutative cosmology and black hole physics based on twisted gravity.

In a forthcoming work [15] we will investigate cosmological implications of twisted

FRW models by studying fluctuations of quantum fields living on twisted FRW back-

grounds. Quantum fields were already introduced in a twisted framework in [16]. As we

see from proposition 4, the noncommutative backgrounds are also invariant under the un-

deformed action of the classical symmetry. This means that they have the same coordinate

representations with respect to the undeformed basis vectors as the commutative fields in

Einstein gravity. With this we have a construction principle for noncommutative back-

grounds, in their natural basis, by representing the classical fields in the deformed basis.

A class of models of particular interest is type C22 in section 5 (cf. table 1). These twists

break classical translation invariance, but classical rotation invariance can be retained by

tuning d1 and c1 to small values. Furthermore, the global factor V 0
2 (t) in the exponent

of the twist can be used in order to tune noncommutativity effects depending on time.

Obviously, enforcing a suitable V 0
2 (t) by hand leads to phenomenologically valid models.

Since there is no natural choice of V 0
2 (t), it is interesting to investigate the dynamics

of V 0
2 (t) in a given field configuration and study if it leads to a model consistent with

cosmological observations. In this case, the model would be physically attractive. This

will also be subject of future work [15]. Dynamical noncommutativity has already been

studied in the case of scalar field theories on Minkowski spacetime [17].

In the case of black hole physics, models of particular interest would be B11 with

functions c0
a(r) decreasing sufficiently quickly with r and B12 with f2(r) and c0

2(r) de-

creasing sufficiently quickly with r (cf. table 2). It will again be interesting to investigate

the dynamics of these functions on a given field configuration. Note that the type B12

with κ1 = κ2 = 0 is invariant under the classical black hole symmetries, and therefore

particularly interesting for physical applications. On the other hand, models with nonvan-

ishing N0
a are of little physical interest, because the noncommutativity is growing linearly

in time, which would be unphysical.

Other avenues for future work are the classification of models on nontrivial topologies

(like, e.g., R × S3 in cosmology), investigating nontrivial embeddings t⋆i = t⋆i (tj) and using

a wider class of twist elements.
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A. Proof of proposition 3

In this appendix we show that for Reshetikhin-Jambor-Sykora twists (4.1) the condi-

tions (3.10) necessary for extending the ⋆-enveloping subalgebra (Ug⋆, ⋆) to a ⋆-Hopf sub-

algebra are equivalent to the simplified conditions of proposition 3. The plan is as follows:

we use (3.10a) and show that it is equivalent to the conditions of proposition 3. In a second

step, we show that (3.10b) is automatically satisfied if (3.10a) is fulfilled, and thus does

not lead to additional conditions.

We start with (3.10a) and show the identity

∆⋆(Ug⋆) ⊆ Ug⋆ ⊗ Ug⋆ ⇔ ∆⋆(g⋆) ⊆ Ug⋆ ⊗ Ug⋆ . (A.1)

The direction ⇒ is trivial, since g⋆ ⊂ Ug⋆, and the direction ⇐ can be shown using that

∆⋆ is a ⋆-algebra homomorphism and that Ug⋆ closes under ⋆-multiplication.

Furthermore, using (2.6) we obtain

∆⋆(g⋆) ⊆ Ug⋆ ⊗ Ug⋆ ⇔ XR̄α ∈ Ug⋆ , for all α with R̄α(g⋆) 6= {0} . (A.2)

Therefore we have to use that all R̄α are linearly independent, that X is a vector space

isomorphism [10] and that we have R̄α(g⋆) ⊆ g⋆, due to the minimal axioms (3.6).

Additionally, we can show that XR̄α = f̄βR̄αχS−1(f̄β) = R̄α. This is done by applying

the explicit form of the twist (4.1) and using that the Va mutually commute.

Next, we show that

R̄α ∈ Ug⋆ , for all α with R̄α(g⋆) 6= {0} ⇔ θbaVb ∈ g⋆ , for all a with [Va, g⋆] 6= {0} .

(A.3)

The direction ⇒ is trivial, since the r.h.s. is a special case of the l.h.s. . The direction ⇐

can be shown by using that the Va mutually commute and the explicit expression of the

R-matrix (4.3).

Finally, the r.h.s. of (A.3) is equivalent to the condition of proposition 3 by using the

canonical form of θ (4.2).

Next, we show that (3.10b) is satisfied, if (3.10a) is fulfilled. For this we use that for

Reshetikhin-Jambor-Sykora twists we have χ = fαS(fα) = 1, which leads to the identity

SF (ξ) = χS(ξ)χ−1 = S(ξ) = S−1(ξ) = S−1
F (ξ) , ∀ξ ∈ UΞ (A.4)

for the antipode in the F-Hopf algebra. This property translates to the ⋆-Hopf algebra,

since it is isomorphic to the F-Hopf algebra and we obtain the following equivalences

of (3.10b)

S⋆(Ug⋆) ⊆ Ug⋆ ⇔ S⋆(g⋆) ⊆ Ug⋆ ⇔ S−1
⋆ (g⋆) ⊆ Ug⋆ . (A.5)
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Type cµν := [xµ ⋆, xν ] in O(λ1)

C11 c0i = iλ
(

V 0
1 (t)ci

2 − V 0
2 (t)ci

1

)

cij = iλ
(

ci
1c

j
2 − (i ↔ j)

)

C21 c0i = −iλV 0
2 (t)

(

ci
1 + f1x

i
)

cij = 0

C12 c0i = iλ
(

V 0
1 (t)κdi

1 − V2(t)(c
i
1 + dk

1ǫklix
l)

)

cij = iλκ
(

(ci
1 + dk

1ǫklix
l)dj

1 − (i ↔ j)
)

C22 c0i = −iλV 0
2 (t)

(

ci
1 + d

j
1ǫjkix

k + f1x
i
)

cij = 0

C32 c0i = iλ
(

V 0
1 (t)(ci

2 + f2x
i) − V 0

2 (t)( 1
f2

d
j
1c

k
2ǫjki + d

j
1ǫjkix

k)
)

cij = iλ
(

( 1
f2

dk
1c

l
2ǫkli + dk

1ǫklix
l) (cj

2 + f2x
j) − (i ↔ j)

)

Table 3: ⋆-commutators in the cosmological models CAB.

Type cµν := [xµ ⋆, xν ] in O(λ1)

B11 c0i = iλ
(

c0
1(r)κ2 − c0

2(r)κ1

)

djǫjkix
k

cij = 0

B21 c0i = iλ
(

c0
1(r) + N0

1 t
)

djǫjkix
k

cij = 0

B12 c0i = iλ
(

c0
1(κ2d

jǫjkix
k + f2(r)x

i) − κ1c
0
2(r)d

jǫjkix
k
)

cij = iλ
(

κ1d
kǫklix

l(κ2d
mǫmnjx

n + f2(r)x
j) − (i ↔ j)

)

B22 c0i = iλ
(

(c0
1(r) + N0

1 t)(κ2d
jǫjkix

k + f2(r)x
i) + 1

N0
1
f2(r)rc

0′
1 (r)κ1d

jǫjkix
k
)

cij = iλ
(

κ1d
kǫklix

l(κ2d
mǫmnjx

n + f2(r)x
j) − (i ↔ j)

)

B32 c0i = iλ
(

c0
1(r) (κ2d

jǫjkix
k + f2(r)x

i) − (c0
2(r) + N0

2 t)κ1d
jǫjkix

k
)

cij = iλ
(

κ1d
kǫklix

l(κ2d
mǫmnjx

n + f2(r)x
j) − (i ↔ j)

)

Table 4: ⋆-commutators in the black hole models BAB.

For the first equivalence we had to use that S⋆ is a ⋆-anti homomorphism.

Using the r.h.s. of (A.3), which is equivalent to (3.10a), and the definition of S−1
⋆ (2.6),

we obtain

S−1
⋆ (g⋆) = −

∞
∑

n=0

(−iλ)n

n!
θa1b1 · · · θanbn [Va1 , · · · , [Van , g⋆] · · · ] Vb1 · · · Vbn

∈ Ug⋆ , (A.6)

where we have used ξ⋆Va = ξVb for all ξ ∈ UΞ⋆, since the action of the twist on Va is trivial.

B. ⋆-commutators of the coordinate functions in FRW and black hole

models

In tables 3 and 4, we list the ⋆-commutators among the linear coordinate functions to

order λ1 in the FRW and black hole models. In these expressions, (i ↔ j) denotes the

same term with i and j interchanged.
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